Grades 8-9
 PROMPT sheet

A/1 Use fractional \& negative indices

- Rules when working with indices:

$$
\begin{array}{ll}
a^{x} \times a^{y}=a^{(x+y)} & a^{x} \div a^{y}=a^{(x-y)} \\
a^{3} \times a^{2}=a^{(3+2)}=a^{5} & a^{7} \div a^{3}=a^{(7-3)}=a^{4} \\
2^{3} \times 2^{2}=2^{(5)}=32 & 3^{7} \div 3^{3}=3^{(4)}=81 \\
\left(a^{x}\right)^{y}=a^{(x y)} & a^{0}=1 \\
\left(a^{3}\right)^{2}=a^{6} & y^{0}=1 \\
\left(2^{3}\right)^{2}=2^{6}=64 & 8^{0}=1 \\
a^{-x}=\frac{1}{a^{x}} & a^{x / y}=(\sqrt[y]{a})^{x} \\
a^{-3}=\frac{1}{a^{3}} & a^{2 / 5}=(\sqrt[5]{a})^{2} \\
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} & 32^{2 / 5}=(\sqrt[5]{32})^{2}=2^{2} \\
\left.a^{-x / y}=\frac{1}{y} \sqrt{a}\right)^{x} &
\end{array}
$$

A/2 Manipulate and simplify surds

$\sqrt{25}$ is NOT a surd because it is exactly 5
$\sqrt{3}$ is a surd because the answer is not exact A surd is an irrational number

- To simplify surds look for square number factors
$\sqrt{75}=\sqrt{25} \times \sqrt{3}=5 \sqrt{3}$
- Rules when working with surds:
$\sqrt{a} \times \sqrt{b}=\sqrt{a b}$
$\sqrt{3} \times \sqrt{15}=\sqrt{45}=\sqrt{9 x 5}=\sqrt{9} \times \sqrt{5}=3 \sqrt{5}$
$m \sqrt{a}+n \sqrt{a}=(m+n) \sqrt{a}$
$2 \sqrt{5}+3 \sqrt{5}=(2+3) \sqrt{5}=5 \sqrt{5}$
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{\frac{72}{20}}=\frac{\sqrt{72}}{\sqrt{20}}=\frac{\sqrt{36} \times \sqrt{2}}{\sqrt{\sqrt{4} \times \sqrt{5}}=\frac{6 \sqrt{2}}{2 \sqrt{5}}=\frac{3 \sqrt{2}}{\sqrt{5}}{ }_{\text {Square number }}}$

- Rationalising the denominator

This is the removing of a surd from the denominator of a fraction by multiplying both the numerator \& the denominator by that surd

In general:
$\frac{a}{\sqrt{b}}=$
$=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}$ (Multiply both top \& bottom by $\sqrt{ }$)
$=\frac{a \sqrt{b}}{b}$

Example

$\frac{6}{\sqrt{12}}$
$=\frac{6}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ (Multiply both top \& bottom by $\sqrt{ } 12$)
$=\frac{6 \sqrt{12}}{12}=\frac{\sqrt{12}}{2}=\frac{\sqrt{4} \times \sqrt{3}}{2}=\frac{2 \sqrt{3}}{2}=\sqrt{3}$

A/3 Upper \& lower bounds

- If ' a ' is rounded to nearest ' x '

Upper bound $=a+\frac{1}{2} x$
Lower bound $=a-\frac{1}{2} x$
e.g. if 1.8 is rounded to 1 dp

Upper bound $=1.8+\frac{1}{2}(0.1)=1.85$
Lower bound $=1.8-\frac{1}{2}(0.1)=1.75$

- Calculating using bounds

Adding bounds
Maximum = Upper + upper
Minimum = Lower + lower

Subtracting bounds
Maximum = Upper - lower
Minimum = Lower - upper
Multiplying
Maximum $=$ Upper \times upper
Minimum = Lower \times lower

Dividing

Maximum $=$ Upper \div lower
Minimum = Lower \div upper

A/4 Direct and inverse proportion

The symbol \propto means:
'varies as' or 'is proportional to'

- Direct proportion

If: $\quad y^{\propto} x$ or $y \propto x^{2}$ or $y \propto x^{3}$
Formulae: $y=k x$ or $y=k x^{2}$ or $y=k x^{3}$
Example
y is directly proportional to x
When $y=21$, then $x=3$
(find value of k first by substituting these values)
$y \propto x \quad \therefore y=k x$

$$
21=k \times 3
$$

$\therefore k=7$

$$
y=7 x
$$

(Now this equation can be used to find y, given x)

- Inverse proportion

If: $\quad y \propto \frac{1}{x}$ or $y \propto \frac{1}{x^{2}}$ or $y \propto \frac{1}{x^{3}}$
Formulae: $y=\frac{k}{x}$ or $y=\frac{k}{x^{2}}$ or $y=\frac{k}{x^{3}}$

Example

a is inversely proportional to b
When $a=12$ and $b=4$
$a \propto \frac{1}{b} \quad \therefore a=\frac{k}{b}$
$12=k$
4
$\therefore \mathrm{k}=48$
$\therefore a=\frac{48}{b}$

A/5 Solve quadratic equation by factorising

- Put equation in form $a x^{2}+b x+c=0$ $2 x^{2}-3 x-5=0$
- Factorise the left hand side
$(2 x-5)(x+1)=0$
- Equate each factor to zero
$2 x-5=0$ or $x+1=0$
$x=2.5$ or $x=-1$

A/6 Solve quadratic equations by formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Example
To solve: $3 x^{2}+4 x-2=0$
$a=3$
$b=4$
$c=-2$
$x=-b \pm \sqrt{b^{2}-4 a c}$
2a
$x=-4 \pm \sqrt{(-4)^{2}-4(3)(-2)}$
2(3)
$=\frac{-4 \pm \sqrt{16+24}}{6}$
$=\frac{-4 \pm \sqrt{40}}{6}$
$x=\frac{-4+\sqrt{40}}{6}$ OR $\frac{-4-\sqrt{40}}{6}$
$x=0.39(2 d p) \quad O R \quad-1.72(2 d p)$

A/7 Solve quadratic equation by completing the square

- Make the coefficient of x^{2} a square $2 x^{2}+10 x+5=0 \quad$ (mult by 2)
$\Rightarrow 4 x^{2}+20 x+10=0$
- Add a number to both sides to make a
perfect square
$4 x^{2}+20 x+10=0$ (Add 15)
$4 x^{2}+20 x+25=15$
$\Rightarrow(2 x+5)^{2}=15$
- Square root both sides

$$
\begin{array}{rlll}
2 x+5 & = \pm \sqrt{15} & (-5 \text { from both sides }) \\
2 x & =-5 \pm \sqrt{15} & \\
x & =-5+\sqrt{15} & \text { OR } & \frac{-5-\sqrt{15}}{2} \\
x & =-0.56 & \text { OR } & -4.44(2 \mathrm{dp})
\end{array}
$$

A/8 Simplify algebraic fractions

Adding \& subtracting algebraic fractions Example 1
$\frac{x+3}{4}+\frac{x-5}{3}$ (common denominator is 12)
$=\frac{3(x+3)}{12}+4\left(\frac{x-5)}{12}\right.$
1212
$=\frac{3 x+9+4 x-20}{12}$
$=\frac{7 x-11}{12}$

Example 2
5 - 3 (common denominator is $(x+1)(x+2)$ $(x+1)(x+2)$
$=\frac{5(x+2)-3(x+1)}{(x+1)(x+2)}$
$=\underline{5 x+10-3 x-3}$
$(x+1)(x+2)$
$=\frac{2 x+7}{(x+1)(x+2)}$

- Simplifying algebraic fractions

Example

$$
=\begin{aligned}
& \frac{2 x^{2}+3 x+1}{x^{2}-3 x-4} \quad \text { (factorise) } \\
& =\frac{(2 x+1)(x+1)}{(x-4)(x+1)} \text { (cancel) } \\
& =\frac{(2 x+1)}{(x-4)}
\end{aligned}
$$

A/9 Solve equations with fractions

```
\(\frac{x}{2 x-3}+\frac{4}{x+1}=1\) Common denominator \((2 x-3)(x+1)\)
\(x(x+1)+4(2 x-3)=1\)
    \((2 x-3)(x+1)\)
\(\underline{x^{2}+x+8 x-12}=1\)
    \((2 x-3)(x+1)\)
\(x^{2}+9 x-12=1(2 x-3)(x+1)\)
\(x^{2}+9 x-12=2 x^{2}-x-3 \quad\left(-x^{2}\right.\) from both sides)
        \(9 x-12=x^{2}-x-3 \quad(-9 x\) from each side \()\)
            \(-12=x^{2}-10 x-3 \quad(+12\) to each side)
            \(0=x^{2}-10 x+9\) (factorise)
    \((x+9)(x+1)=0\)
\(x=-9\) or \(x=-1\)
```


A/10 Solve simultaneous equations ~ one is a quadratic

- Rewrite the linear with one letter in terms of the other
- Substitute the linear into the quadratic Example
$x+y=4$ (find one letter in terms of the other
$\Rightarrow y=4-x$
$x^{2}+y^{2}=40$ (substitute $y=4-x$)
$x^{2}+(4-x)^{2}=40$ (Expand $\left.(4-x)^{2}\right)$
$x^{2}+16-8 x+x^{2}=40$
$2 x^{2}-8 x+16=40$ (-40 from each side)
$2 x^{2}-8 x-24=0(\div 2$ both sides)
$x^{2}-4 x-12=0$ (factorise)
$(x-6)(x+2)=0$
$x=6$ or $x=-2$

A/10 Solve GRAPHICALLY simultaneous equations ~ one is a quadratic

- Draw the two graphs and find where they intersect
Example
$y=2 x^{2}-4 x-3$
$y=2 x-1$

Solutions are $x=-0.3$ and $x=3.3$ (points of intersection)

- Sometimes the equation has to be adapted~ rearrange the equation to solve so that the equation of the graph drawn is on the left. On the right is the other equation to be drawn

A/11 Graph of Exponential function

The graph of the exponential function is:

$$
y=a^{x}
$$

Example $y=2^{x}$

It has no maximum or minimum point
It crosses the y-axis at $(0,1)$
It never crosses the x-axis

A/12Graph of the circle

The graph of a circle is of the form:

$$
x^{2}+y^{2}=r^{2}
$$

where r is the radius and the centre is $(0,0)$

This a circle of radius 5 and a centre $(0,0)$
The graph of this circle is

$$
\Rightarrow \begin{aligned}
& x^{2}+y^{2}=5^{2} \\
& x^{2}+y^{2}=25
\end{aligned}
$$

A/13 Graphs of trigonometric functions

LEARN THE SHAPES OF THE GRAPHS

Graph of $y=\sin x$

$-1 \leq \sin x \leq 1$

Graph $y=\cos x$

$-1 \leq \cos x \leq 1$

Graph $y=\tan x$

Tan x is undefined at $90^{\circ}, 270^{\circ} \ldots$.
Solutions to trigonometrical equations can be found on the calculator and by using the symmetry of these graphs

Example:

If $\sin x=0.5$
$x=30^{\circ}, 150^{\circ}, \quad$ (See the solutions on \sin graph above or from calculator)

A/14 Transformation of functions

$f(x)$ means 'a function of x '
e.g. $f(x)=x^{2}-4 x+1$
$f(3)$ means work out the value of $f(x)$ when $x=3$ e.g. $f(3)=3^{2}-4 \times 3+1=-2$

In general for any graph $y=f(x)$ these are the transformations

$y=f(x)+a$	Translation $\binom{0}{a}$
$y=f(x+a)$	Translation $\binom{-a}{0}$
$y=-f(x)$	Reflection in the x-axis
$y=f(-x)$	Reflection in the y-axis
$y=a f(x)$	Stretch from the x - $a x i s$ Parallel to the y - $a x i s$ Scale factor=a
$y=f(a x)$	Stretch from the y - $a x i s$ Parallel to the x-axis Scale factor= $\frac{1}{a}$ a

A/15 Change the subject of a formula

- The subject may only appear once Use balancing to isolate the new subject

Example : To make ' x ' the new subject

$$
\begin{aligned}
A & \left.=\frac{k(x+5)}{3} \quad \text { (multiply both sides by } 3\right) \\
\Rightarrow 3 A & =k(x+5) \quad \text { (Expand the bracket) } \\
\Rightarrow 3 A & =k x+5 k \quad(-5 k \text { from both sides) } \\
3 A-5 k & =k x \quad(\div k \text { both sides }) \\
\frac{3 A-5 k}{k} & =\frac{K x}{\not K} \\
x & =\frac{3 A-5 k}{k}
\end{aligned}
$$

- The subject may appear twice Collect together all the terms containing the new subject \& factorise to isolate it

Example: to make 'b' the new subject
$a=\frac{2-7 b}{b-5} \quad$ (multiply both sides by $(b-5)$
$a(b-5)=2-7 b \quad$ (Expand the bracket)
$a b-5 a=2-7 b \quad(+7 b$ to both sides)
$7 b+a b-5 a=2 \quad(+5 a$ to both sides) To leave terms in b together
$7 b+a b=2+5 a \quad$ (factorise the left side) To isolate b
$\underline{b(7+a)}=\underline{2+5 a} \quad(\div(7+a)$ both sides $)$ $(7+a) \quad(7+a)$
$b=\frac{2+5 a}{(7+a)}$

A/16 Enlarge by a negative scale factor

With a negative scale factor:

- The image is on the opposite side of the centre
- The image is also inverted

Example : Enlargement scale factor - 2 about 0

A/17 Congruence

- Congruent shapes have the same size and shape, one will fit exactly over the other.
- 2 triangles are congruent if any of these 4 conditions are satisfied on each triangle
~The corresponding sides are equal ~SSS

~2 sides \& the included angle are equal ~ SAS

~ 2 angles \& the corresponding side are equal ~ ASA

\sim Both triangles are right-angled, hypotenuses are equal and another pair of sides are equal \sim RHS

A/18 Similarity \& enlargement

- For similar shapes when:

Length scale factor $=k$
Area scale factor $=k^{2}$
Volume scale factor $=k^{3}$
Example

If height of $A=4 \mathrm{~cm}$ \& height of $B=6 \mathrm{~cm}$

- Length scale factor $=6 \div 4=1.5$

If surface area of $A=132 \mathrm{~cm}^{2}$

- Surface area of $B=132 \times 1.5^{2}=297 \mathrm{~cm}^{3}$

If volume of $A=120 \mathrm{~cm}^{3}$

- Volume of $B=120 \times 1.5^{3}=405 \mathrm{~cm}^{3}$

A/19 Finding lengths \& angles in 3D

- Identify the triangle in the 3D shape containing the unknown side/angle
- Use Pythagoras and trigonometry as appropriate

To find an angle use:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

To find a side use:

$$
\frac{a}{\sin A}=\frac{\underline{b}}{\sin B}=\frac{\underline{c}}{\sin C}
$$

Use SINE RULE when given:

- two sides and a non-included angle
- any two angles and one side

$$
\begin{aligned}
\frac{b}{\sin B} & =\frac{a}{\sin C} \\
\frac{b}{\sin 52^{\circ}} & =\frac{30}{\sin 40^{\circ}} \\
b & =\frac{30}{\sin 40^{\circ}} \times \sin 52^{\circ} \\
\underline{b} & =36.8 \mathrm{~cm}(1 \mathrm{dp})
\end{aligned}
$$

Example: To find angle C

$$
\begin{aligned}
& C=7.1 \mathrm{~cm} \\
& \frac{\sin C}{C}=\frac{\sin A}{a} \\
& \frac{\sin C}{7.1}=\frac{\sin 35^{\circ}}{9} \\
& \sin C=\frac{\sin 35^{\circ}}{9} \times 7.1 \\
& \sin C=0.4524 \ldots . . \\
& C=\sin ^{-1}(0.4524 \ldots . .) \\
& C=28.9^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

A/20 Area of triangle -height not known

Area $=\frac{1}{2} a b \sin C$
Area $=\frac{1}{2} b c \sin A$
Area $=\frac{1}{2}$ ac $\sin B$

Example

B

$$
a=8 \mathrm{~cm}
$$

C

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \mathrm{ab} \sin C \\
& =\frac{1}{2} \times 8 \times 6 \times \sin 38^{\circ} \\
& =14.8 \mathrm{~cm}^{2}(1 \mathrm{dp})
\end{aligned}
$$

A/21 Pyramid \& Sphere-Volume

VOLUME - PYRAMID

Volume of Pyramid $=\frac{1}{3} \times$ area of cross-section x height
e.g. cone

Volume $=\frac{1}{3} \times \pi r^{2} h$
Volume $=\frac{1}{3} \times \mid \times w \times h$
VOLUME - SPHERE
Volume of Sphere $=\frac{4}{3} \pi r^{3}$

VOLUME -FRUSTUM OF A CONE

FRUSTUM OF CONE

Volume of frustum
$=$ Volume of whole cone - volume of cone removed
$=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h$

A/21 Pyramid \& Sphere - Surface Area

CURVED SURFACE AREA

\sim Curved surface area of a cylinder $=2 \pi r h$

\sim Curved surface of a cone $=\pi r l$

[NB To find 'l' use Pythagoras' Theorem

$$
\left.I^{2}=h^{2}+r^{2}\right]
$$

\sim Curved surface of a sphere $=4 \pi r^{2}$

A/22 Length of arc \& area of sector

Length of arc $=\frac{\theta}{360^{\circ}} \times 2 \pi r$

Area of sector $=\underline{\theta} \times \pi r^{2}$ 360°

A/22 Area of segment

Area of segment

= area of sector - area of triangle
$=\frac{\theta}{360^{\circ}} \times \pi r^{2} \quad-\frac{1}{2} a b \sin \theta$
$=\frac{64^{0}}{360^{\circ}} \times \pi \times 7^{2}-\frac{1}{2} 7 \times 7 \times \sin 64^{0}$
$=5.35 \mathrm{~cm}^{2}(1 \mathrm{dp})$

A/23 Circle properties

The angle at the centre $=2 x$ the angle at the circumference

Angles in the same segment are equal

The perpendicular from the centre to a chord bisects the chord

The angle between a tangent and a chord is equal to the angle in the alternate segment

A/24 Vectors

- Vector notation

This vector can be written as $\binom{3}{2}$ or \underline{a} or $\overrightarrow{A B}$

- A vector has magnitude(length) \& direction(shown by an arrow)
Magnitude can be found by Pythagoras Theorem

$$
A B=\sqrt{3^{2}+2^{2}}=\sqrt{3}=3.6
$$

- A parallel vector with same magnitude but opposite direction

Vector $\overrightarrow{P Q}$ is equal in length to $\overrightarrow{A B}$ but opposite in direction so we say:

$$
\overrightarrow{P Q}=-\underline{a}
$$

- A parallel vector with same direction but different magnitude

Vector $\overrightarrow{C D}$ is twice (scalar 2) the magnitude but same direction so we say:

$$
\overrightarrow{C D}=2 \underline{a}
$$

A negative scalar would reverse the direction

- Vector addition

Adding graphically, the vectors go nose to tail

$$
\underline{a}=\binom{3}{2} \quad \underline{b}=\binom{-2}{2}
$$

The combination of these two vectors:

$$
\begin{aligned}
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C} & =\underline{a}+\underline{b} \\
& \binom{3}{2}+\binom{-2}{2} \\
& =\binom{1}{4}
\end{aligned}
$$

- Vector subtraction

Adding graphically, the vectors go nose to tail
$\underline{a}=\binom{3}{2} \quad \underline{b}=\binom{-2}{2}$

The combination of these two vectors:

$$
\begin{aligned}
\overrightarrow{A B}-\overrightarrow{B C}=\overrightarrow{A C} & =\underline{a}-\underline{b} \\
& \binom{3}{2}-\binom{-2}{2} \\
& =\binom{5}{0}
\end{aligned}
$$

$\overrightarrow{A C}$ is called the RESULTANT vector

- The sum of vectors

$$
\begin{array}{ll}
M & B
\end{array}
$$

$$
\overrightarrow{A B}=\overrightarrow{A P}+\overrightarrow{P M}+\overrightarrow{M B}
$$

The vector $A B$ is equal to the sum of these vectors or it could be a different route:

A/25 Sampling

The sample is:

- a small group of the population.
- an adequate size
- representative of the population

Simple random sampling

Everyone has an equal chance
e.g. pick out names from a hat

Systematic sampling

Arranged in some sort of order
e.g. pick out every $10^{\text {th }}$ one on the list

Stratified sampling

Sample is divided into groups according to criteria These groups are called strata
A simple random sample is taken from each group in proportion to its size using this formula:

No from each group $=\underline{\text { Stratum size }} \times$ Sample size Population

Example

An inspector wants to look at the work of a stratified sample of 70 of these students.

Language	Number of students
Greek	145
Spanish	121
German	198
French	186
Total	650

No. from Greek $=\underline{145} \times 70 \approx 16$

No. from Spanish $=\frac{121}{650} \times 70 \approx 13$

No. from German $=\underline{198} \times 70 \approx 21$
650

No. from French $=186 \times 70 \approx 20$
650

This only tells us 'how many' to take - now take a random sample of this many from each language

A/26 Histograms

- Class intervals are not equal
- Vertical axis is the frequency density
- The area of each bar not the height is the frequency
Frequency $=$ class width \times frequency density Frequency density $=$ frequency \div class width

To draw a histogram

Calculate the frequency density
Example

Age $(x$ years $)$	Class width	f	Frequency density
$0<x \leq 20$	$\mathbf{2 0}$	$\mathbf{2 8}$	$\mathbf{2 8} \div \mathbf{2 0}=1.4$
$20<x \leq 35$	$\mathbf{1 5}$	$\mathbf{3 6}$	$\mathbf{3 6} \div \mathbf{1 5}=2.4$
$35<x \leq 45$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{2 0} \div \mathbf{1 0}=2$
$45<x \leq 65$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3 0} \div \mathbf{2 0}=1.5$

Scale the frequency density axis up to 2.4
Draw in the bars to relevant heights \& widths

To interpret a histogram

NOTE: On the vertical axis each small square $=0.8$

Price (\boldsymbol{P}) in pounds (£)	$\mathbf{f =}$ width \mathbf{x} height
$0<P \leq 5$	$5 \times 8=40$
$5<P \leq 10$	$5 \times 12=60$
$10<P \leq 20$	$10 \times 5.6=56$
$20<P \leq 40$	$20 \times 1.6=32$

A/27 Probability - the 'and' 'or' rule

$$
P(A \text { or } B)=p(A)+p(B)
$$

Use this addition rule to find the probability of either of two mutually exclusive events occurring
e.g. $p(a 3$ on a dice or a 4 on a dice $)$

$$
=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}
$$

$$
P(A \text { and } B)=p(A) \times p(B)
$$

Use this multiplication rule to find the probability of either of both of two independent events occurring
e.g. p (Head on a coin and a 6 on a dice)

$$
=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}
$$

A/28 Probability - Tree diagram for successive dependent events

When events are dependent, the probability of the second event is called a conditional event because it is conditional on the outcome of the first event

Example

2 milk and 8 dark chocolates in a box
Kate chooses one and eats it. (ONLY 9 left now)
She chooses a second one
This can be shown on a tree diagram

