Grades 8 - 9 PROMPT sheet

A/1 Use fractional & negative indices

• Rules when working with indices:

 $a^{x} \times a^{y} = a^{(x + y)} \qquad a^{x} \div a^{y} = a^{(x - y)}$ $a^{3} \times a^{2} = a^{(3 + 2)} = a^{5} \qquad a^{7} \div a^{3} = a^{(7 - 3)} = a^{4}$ $2^{3} \times 2^{2} = 2^{(5)} = 32 \qquad 3^{7} \div 3^{3} = 3^{(4)} = 81$ $(a^{x})^{y} = a^{(x + y)}$ $(a^{3})^{2} = a^{6} \qquad y^{0} = 1$ $(2^{3})^{2} = 2^{6} = 64 \qquad 8^{0} = 1$ $a^{-x} = \frac{1}{a^{x}} \qquad a^{x/y} = (\sqrt[y]{a})^{x}$ $a^{-3} = \frac{1}{a^{3}} \qquad a^{2/5} = (\sqrt[5]{a})^{2}$ $a^{-3} = \frac{1}{2^{3}} = \frac{1}{8} \qquad 32^{2/5} = (\sqrt[5]{32})^{2} = 2^{2}$ $a^{-x/y} = \frac{1}{(\sqrt[y]{a})^{x}}$

A/2 Manipulate and simplify surds

 $\sqrt{25}\,$ is NOT a surd because it is exactly 5

- $\sqrt{3}$ $% \sqrt{3}$ is a surd because the answer is not exact A surd is an irrational number
 - To simplify surds look for square number factors

$$\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$$

• Rules when working with surds:

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

 $\sqrt{3} \times \sqrt{15} = \sqrt{45} = \sqrt{9x5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$

$$\mathbf{m}\sqrt{a} + \mathbf{n}\sqrt{a} = (\mathbf{m}+\mathbf{n})\sqrt{a}$$

$$2\sqrt{5} + 3\sqrt{5} = (2+3)\sqrt{5} = 5\sqrt{5}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\underbrace{\sqrt{5}}_{\sqrt{20}} = \frac{\sqrt{72}}{\sqrt{20}} = \frac{\sqrt{36} \times \sqrt{2}}{\sqrt{4} \times \sqrt{5}} = \frac{6\sqrt{2}}{2\sqrt{5}} = \frac{3\sqrt{2}}{\sqrt{5}}$$

$$\underbrace{\sqrt{5}}_{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}}$$

$$\underbrace{\sqrt{5}}_{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}}$$

• Rationalising the denominator

This is the removing of a surd from the denominator of a fraction by multiplying both the numerator & the denominator by that surd

In general:

$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}$$
 (Multiply both top & bottom by \sqrt{b})
$$= \frac{a\sqrt{b}}{b}$$

Example
6

$$\overline{\sqrt{12}} = \frac{6}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$
 (Multiply both top & bottom by J12)
= $\frac{6\sqrt{12}}{12} = \frac{\sqrt{12}}{2} = \frac{\sqrt{4} \times \sqrt{3}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}$

A/3 Upper & lower bounds If 'a' is rounded to nearest 'x' Upper bound = a + ¹/₂x Lower bound = a - ¹/₂x e.g. if 1.8 is rounded to 1dp Upper bound = 1.8 + ¹/₂(0.1) = 1.85 Lower bound = 1.8 - ¹/₂(0.1) = 1.75 Calculating using bounds

Adding bounds Maximum = Upper + upper Minimum = Lower + lower

Subtracting bounds

Maximum = Upper - lower Minimum = Lower - upper

Multiplying

Maximum = Upper x upper Minimum = Lower x lower

Dividing

Maximum = Upper ÷ lower Minimum = Lower ÷ upper

A/5 Solve quadratic equation by factorising
• Put equation in form $ax^2 + bx + c = 0$
 2x⁻ - 3x - 5=0 Factorise the left hand side
(2x - 5)(x + 1) = 0
 Equate each factor to zero
2x - 5 = 0 or $x + 1 = 0$
x = 2.5 or $x = -1$

A/6 Solve guadratic equations by formula $x = -b \pm \sqrt{b^2 - 4ac}$ 2n Example To solve: $3x^2 + 4x - 2 = 0$ a = 3 b = 4 c = -2 $x = -b \pm \sqrt{b^2 - 4ac}$ 2a $x = -4 \pm \sqrt{(-4)^2 - 4(3)(-2)}$ 2(3) $= \frac{-4 \pm \sqrt{16 + 24}}{6}$ $= \frac{-4\pm\sqrt{40}}{6}$ $x = \frac{-4 + \sqrt{40}}{6}$ OR $\frac{-4 - \sqrt{40}}{6}$ x = 0.39(2dp) OR -1.72 (2dp)

A/7 Solve quadratic equation by completing the square • Make the coefficient of x² a square $2x^{2} + 10x + 5 = 0$ (mult by 2) \Rightarrow 4x² + 20x + 10 = 0 Add a number to both sides to make a perfect square $4x^2 + 20x + 10 = 0$ (Add 15) $4x^2 + 20x + 25 = 15$ $\Rightarrow (2x+5)^2 = 15$ • Square root both sides $2x + 5 = \pm \sqrt{15}$ (-5 from both sides) 2x =-5 ± √15 x <u>=-5 + $\sqrt{15}$ </u> OR <u>-5 - $\sqrt{15}$ </u> 2 2 <u>x = -0.56 OR -4.44 (2dp)</u>

A/8 Simplify algebraic fractions

Adding & subtracting algebraic fractions Example 1

 $\frac{x+3}{4} + \frac{x-5}{3}$ (common denominator is 12)

 $= \frac{3(x+3)}{12} + 4(x-5)$ $= \frac{3x+9+4x-20}{12}$

= <u>7x - 11</u> 12

Example 2

 $\frac{5}{(x+1)} - \frac{3}{(x+2)}$ (common denominator is (x+1)(x+2)) = $\frac{5(x+2) - 3(x+1)}{(x+1)(x+2)}$ = $\frac{5x + 10 - 3x - 3}{(x+1)(x+2)}$ = $\frac{2x + 7}{(x+1)(x+2)}$

• Simplifying algebraic fractions Example

 $\frac{2x^{2} + 3x + 1}{x^{2} - 3x - 4}$ (factorise) = $\frac{(2x + 1)(x + 1)}{(x - 4)(x + 1)}$ (cancel) = $\frac{(2x + 1)}{(x - 4)}$

A/9 Solve equations with fractions

 $\frac{x}{2x-3} + \frac{4}{x+1} = 1 Common denominator (2x-3)(x+1)$ $\frac{x(x+1)+4(2x-3)}{(2x-3)(x+1)} = 1$ $\frac{x^2 + x + 8x - 12}{(2x-3)(x+1)} = 1$ $x^2 + 9x - 12 = 1(2x-3)(x+1)$ $x^2 + 9x - 12 = 2x^2 - x - 3 \quad (-x^2 \text{ from both sides})$ $9x - 12 = x^2 - x - 3 \quad (-9x \text{ from each side})$ $-12 = x^2 - 10x - 3 \quad (+12 \text{ to each side})$ $0 = x^2 - 10x + 9 \text{ (factorise)}$ (x + 9)(x + 1) = 0 $x = -9 \quad \text{or} \quad x = -1$

A/10 Solve simultaneous equations ~ one is a quadratic Rewrite the linear with one letter in terms of the other • Substitute the linear into the guadratic Example x + y = 4 (find one letter in terms of the other) ⇒ y = 4 - x $x^{2} + y^{2} = 40$ (substitute y=4 -x) $x^{2} + (4-x)^{2} = 40$ (Expand $(4-x)^{2}$) $x^{2} + 16 - 8x + x^{2} = 40$ $2x^2 - 8x + 16 = 40$ (-40 from each side) $2x^2 - 8x - 24 = 0$ (÷2 both sides) $x^{2} - 4x - 12 = 0$ (factorise) (x - 6)(x + 2) = 0x = 6 or x = -2A/10 Solve GRAPHICALLY simultaneous equations ~ one is a quadratic Draw the two graphs and find where they intersect Example $y=2x^{2}-4x-3$ y=2x-1 Solutions are x = -0.3 and x = 3.3(points of intersection) Sometimes the equation has to be adapted~ rearrange the equation to solve so that the equation of the graph drawn is on the left. On the right is the other equation to be drawn

This a circle of radius 5 and a centre (0,0) The graph of this circle is

$$x^{2} + y^{2} = 5^{2}$$

⇒ $x^{2} + y^{2} = 25$

A/13 Graphs of trigonometric functions

Example:

If sin x = 0.5 $x = 30^{\circ}$, 150° , *(See the solutions on sin graph above* or from calculator)

A/14 Transformation of functions

f(x) means 'a function of x' e.g. f(x) = x ² - 4x + 1 f(3) means work out the value of f(x) when x = 3 e.g. f(3) = 3 ² - 4x3 + 1 = -2				
In general for any graph y = f(x) these are the				
y = f(x) + a	Translation (0)			
	\ a/			
y = f(x+ a)	Translation (-a 0			
y = -f(x)	Reflection in the x-axis			
y = f(-x)	Reflection in the y-axis			
y = af(x)	Stretch from the x-axis			
	Parallel to the y-axis			
	Scale factor=a			
y = f(ax)	Stretch from the y-axis			
	Parallel to the x-axis			
	Scale factor= <u>1</u>			
	٥			

• The subject may appear twice Collect together all the terms containing the new subject & factorise to isolate it

Example: to make 'b' the new subject

a = <u>2 - 7b</u> b - 5	(multiply both sides by (b - 5)
a(b - 5) = 2 - 7b	(Expand the bracket)
ab - 5a = 2 - 7b	(+7b to both sides)
7b + ab - 5a = 2	(+5a to both sides) To leave terms in b together
7b + ab = 2 + 5a	(factorise the left side) <i>To isolate b</i>
$\frac{b(7+a)}{(7+a)} = \frac{2+5a}{(7+a)}$	(÷(7 + a) both sides)
b = <u>2 + 5a</u> (7 + a)	

A/15 Change the subject of a formula • The subject may only appear once Use balancing to isolate the new subject Example : To make 'x' the new subject $A = \frac{k(x + 5)}{3}$ (multiply both sides by 3) 3 = 3A = k(x + 5) (Expand the bracket) 3A = kx + 5k (-5k from both sides) 3A - 5k = kx ($\pm k$ both sides) $3A - 5k = \frac{kx}{k}$ $x = \frac{3A - 5k}{k}$

A/16 Enlarge by a negative scale factor

With a negative scale factor:

- The image is on the opposite side of the centre
- The image is also inverted

Example : Enlargement scale factor -2 about 0

A/17 Congruence

A/18 Similarity & enlargement

A/24 Vectors

A negative scalar would reverse the direction

Vector addition •

Adding graphically, the vectors go nose to tail

The combination of these two vectors:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = \underline{a} + \underline{b}$$
$$\begin{pmatrix} 3\\ 2 \end{pmatrix} + \begin{pmatrix} -2\\ 2 \end{pmatrix}$$

 $= \begin{pmatrix} 1 \\ 4 \end{pmatrix}$

$$\underline{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \underline{b} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

The combination of these two vectors:

$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AC} = \overrightarrow{a} - \overrightarrow{b}$$
$$\begin{pmatrix} 3\\2 \end{pmatrix} - \begin{pmatrix} -2\\2 \end{pmatrix}$$
$$= \begin{pmatrix} 5\\0 \end{pmatrix}$$

 \overrightarrow{AC} is called the RESULTANT vector

The vector AB is equal to the sum of these vectors or it could be a different route:

A/25 Sampling

The sample is:

- a small group of the population.
- an adequate size
- representative of the population

Simple random sampling

Everyone has an equal chance e.g. pick out names from a hat

Systematic sampling

Arranged in some sort of order e.g. pick out every $10^{\rm th}$ one on the list

Stratified sampling

Sample is divided into groups according to criteria These groups are called strata A simple random sample is taken from each group in proportion to its size using this formula:

No from each group = <u>Stratum size</u> × Sample size Population

Example

An inspector wants to look at the work of a stratified sample of 70 of these students.

Language	Number of students		
Greek	145		
Spanish	121		
German	198		
French	186		
Total	650		

No. from Greek = $\frac{145}{650} \times 70 \approx 16$

No. from Spanish = <u>121</u> × **70** ≈ 13 **650**

No. from German = <u>198</u> × **70** ≈ 21 **650**

No. from French = $\frac{186}{650} \times 70 \approx 20$

This only tells us 'how many' to take - now take a random sample of this many from each language

A/26 <u>Histograms</u>

- Class intervals are not equal
- Vertical axis is the frequency density
- The area of each bar not the height is the frequency

Frequency = class width × frequency density Frequency density = frequency ÷ class width

<u>To draw a histogram</u>

Calculate the frequency density <u>Example</u>

Age (x years)	Class width	f	Frequency density
$0 < x \le 20$	20	28	28÷20 = 1.4
$20 < x \le 35$	15	36	$36 \div 15 = 2.4$
$35 < x \le 45$	10	20	$20 \div 10 = 2$
$45 < x \le 65$	20	30	30÷20 = 1.5

Scale the frequency density axis up to 2.4 Draw in the bars to relevant heights & widths

<u>To interpret a histogram</u>

Price (P) in pounds (£)	f = width x height
$0 \le P \le 5$	5 x 8 = 40
$5 < P \le 10$	5 x 12 = 60
$10 < P \le 20$	10 x 5.6 = 56
$20 < P \le 40$	20 x 1.6 = 32

A/27 Probability - the 'and' 'or' rule

P(A or B) = p(A) + p(B)

Use this <u>addition rule</u> to find the probability of either of two mutually exclusive events occurring

e.g. p(a 3	on a	dice	<u>or</u> a 4	4 on a dice)
	_ 1	1	_ 2	
	- 6	6 6	6	

$P(A \text{ and } B) = p(A) \times p(B)$

Use this <u>multiplication rule</u> to find the probability of either of both of two independent events occurring

e.g. p(Head on a coin <u>and</u> a 6 on a dice)

 $=\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$

A/28 <u>Probability – Tree diagram for</u> <u>successive dependent events</u>

When events are dependent, the probability of the second event is called a conditional event because it is conditional on the outcome of the first event

Example

2 milk and 8 dark chocolates in a box Kate chooses one and eats it. (ONLY 9 left now) She chooses a second one This can be shown on a tree diagram

