Grade 6-7 PROMPT sheet

B/1 Change recurring decimal to fraction

If $x=0.4444444$
If $x=0.54545$
$10 x=4.4444444$
$100 x=54.545454$
$9 x=4$
$x=\underline{4}$
9
$99 x=54$
$x=\underline{54}$
99

B/2 Repeated percentage change

To increase $£ 12$ by 5% per year for 4 yr $=1.05^{4} \times £ 12$
To decrease $£ 50$ by 12% per year for 4 yr $=0.88^{4} \times £ 50$

$B / 2$ To find the original quantity

~If an amount has been increased by 5\%
Original amount $=$ new amount $\div 1.05$
~If an amount has been decreased by 12%
Original amount $=$ new amount $\div 0.88$

B/3 Standard Form

$\sim a \times 10^{n}$
a is between $1 \& 10 ; n$ is an integer
~ When mult/div in standard form,
work out number part separate from the power of 10 part
e.g. $3 \times 10^{5} \times 4 \times 10^{3}=12 \times 10^{8}=1.2 \times 10^{9}$
~With a calculator use EXP or $x 10^{x}$

B/4 Factorise a quadratic expression

$x^{2}-3 x-4=(x-4)(x+1)$
$x^{2}-25=(x-5)(x+5)$

B/5 Expand 2 brackets

- Use FOIL

F O I L
$x^{2}-2 x+3 x-6$
$=x^{2}+x-6$

B/6 Change the subject of a formula

- Isolate the new subject
- Use balancing

Make c new subject Make x new subject
$f=3 c-4$
$3 c-4=f(+4)$

$$
a x+b x=a y
$$

$$
x(a+b)=a y
$$

$3 c=f+4(\div 3)$

$$
x \quad=\underline{a y}
$$

$c=\frac{f+4}{3}$

$$
3
$$

B/7 Evaluate algebraic formulae

Rewrite the formula with numbers replacing letters

- WITH A CALCULATOR

Use (-) key for negative numbers

- WITHOUT A CALCULATOR

Remember the rules for negative numbers

$$
\begin{aligned}
& -+=- \\
& --=+ \\
& -x-=+
\end{aligned}
$$

B8 Solve simultaneous equations by an algebraic method

- Make the number of ys the same
- Add or subtract to eliminate the ys Same signs ~ subtract Different signs ~ add
- Find the value of x
- Substitute the value of x to find y
e.g.

$$
\begin{array}{r}
2 x-3 y=11 \quad(x 2) \\
5 x+2 y=18 \quad(x 3) \\
4 x-6 y=22 \\
15 x+6 y=54
\end{array}
$$

Add the two equations to eliminate y

$$
\begin{aligned}
& 19 x=76 \\
& x=4 \\
& \hline
\end{aligned}
$$

Substitute $x=4$ into one of the equations $5 x+2 y=18$
$5 x 4+2 y=18$
$20+2 y=18$
$2 y=-2$

$$
y=-1
$$

B8 Solve simultaneous equations graphically

- Draw the graphs of the equations
- Find where they cross

B/9 Represent inequalities graphically

First plot the straight line.
Decide which side of the line to shade.
Leave the region required unshaded.
e.g. $x \leq 3 \quad y>-2 \quad y<x$

B/10 Identify graphs

- Learn the basic shapes of graphs

Linear graphs - straight line - equation in x Quadratic graph - parabola - equation in x^{2} Cubic graph - S-shape - equation in x^{3}
Reciprocal graph - equation e. $9 y=\underline{3}$

B/11 Effect of adding/multiplying by a constant on a graph

Original graph $y=x^{2}$	
New equation	Change in graph
$y=x^{2}+2$	Move up 2
$y=x^{2}-2$	Move down 2
$y=2 x^{2}$	Stretch from x-axis in $y-$ direction - scale factor 2
$y=\frac{1}{2} x^{2}$	Stretch from x-axis in $y-$ direction - scale factor $\frac{1}{2}$

B/12 Coordinates in 3D

In 3D there are 3 axes, x, y and z
The coordinates of a point are (x, y, z)

Example

On the grid the vertex P is $(2,1,3)$

B13 Similarity

If one shape is an enlargement of the other, we say they are similar.

- Corresponding angles are equal
- Corresponding sides have proportional lengths

Example - these 2 triangles are similar

Scale factor $=6 \div 4.8=1.25$
$X=8 \div 1.25=6.4 \mathrm{~cm}$
N.B.

Always draw the 2 triangles separately and the same way up - it is easier to spot the sides that correspond to each other

B/14 Trigonometry

SOH CAH TOA

EXAMPLES

$\sin x=\frac{4}{5}$	$\cos 28^{\circ}=\frac{x}{5}$	$\tan 28=\frac{5}{x}$
$\sin x=0.8$	$x=5 x \cos 28^{\circ}$	$x=\underline{5}$
$x=\sin ^{-1}(0.8)$	$\underline{x}=4.4$	$\tan 28$
$x=53.1^{\circ}$		$x=9.4$

B/15 Difference between formulae for length, area and volume

- Numbers and π have no dimensions
- Length \times length $=$ area
- Length \times length \times length $=$ volume

Example:

$$
5 a b c+3 a^{2} b \text { (Ignore the numbers) }
$$

$>a \times b \times c+a \times a \times b$
> volume + volume
> volume

B/16 Median, quartiles \& interquartile range from cumulative frequency graph

Median = 38 marks
Upper quartile $=43$ marks
Lower quartile $=30$ marks
Interquartile range $=43-30=13$ marks

$\mathrm{B} / 16$ Box plot

B/17 Compare distributions. 0000

- Mean, median \& mode compare size
- Range \& interquartile range compare spread
- Distributions can be compared visually using a box plot

B/18 Add or multiply two probabilities

$$
P(A \text { or } B)=p(A)+p(B)
$$

$P(A$ and $B)=p(A) \times p(B)$

If you get an answer to a probability question that is more than one, you have most certainly added instead of multiplied

B/19 Tree Diagrams

- When going along the branches.

MULTIPLY the probabilities

- If more than one route is wanted, ADD the probabilities

Example:

The probability that Jane is late $=0.2$

To find the probability of late on only one day:

