Grade 4

PROMPT sheet

D/1 Equivalent fractions, decimals \& percentages

- Percentage to decimal to fraction $27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction
$0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage
$\frac{4}{5}=\frac{80}{100}=80 \%=0.8$

Change to 100
$\frac{3}{8}=3 \div 8=0.375=37.5 \%$

D/2 Increase/Decrease by a percentage

- To increase $£ 12$ by 5%
$=1.05 \times £ 12$
(100\% + 5\% = 105\%)
OR
$=£ 12+5 \%$ of $£ 12$
- To decrease $£ 50$ by 15%
$=0.85 \times £ 50$
(100\% - 15\% = 85\%)
OR
$=£ 50-15 \%$ of $£ 50$

D/3 Divide a quantity into a given ratio
~ Put headings
~Find how many shares in total
~ Amount \div no. shares = value of one share
e.g. Divide $£ 240$ between A and B in ratio of $3: 5$

$$
\begin{aligned}
& A: B \\
& 3: 5=8 \text { shares }
\end{aligned}
$$

One share $=£ 240 \div 8=£ 30$
$A=3$ shares $=3 \times £ 30=\underline{£ 90}$
$B=5$ shares $=5 \times £ 30=£ 150$

D/4 Use proportional reasoning

- Change an amount in proportion
e.g. If 6 books cost $£ 22.50$

Find the cost of 11. (find cost of 1 first)

- Change amounts to compare
e.g. A pack of 5 pens cost $£ 6.10$

A pack of 8 pens cost $£ 9.20$
Which is the best buy? (find cost of 40 of each)

D/5 Calculate with fractions

- Add \& subtract fractions
~Make the denominators the same

$$
\begin{aligned}
\text { e.g. } & \frac{1}{5}+\frac{7}{10} & \frac{4}{5}-\frac{10}{15} \\
= & \frac{2}{10}+\frac{7}{10} & =\frac{12}{15}-\frac{10}{15} \\
= & \frac{9}{10} & =\frac{2}{15}
\end{aligned}
$$

- Multiply fractions
\sim Write 7 as $\frac{7}{1}$
~Multiply numerators \& denominators

e.g. $5 \times \frac{2}{3}$	$\frac{4}{5} \times \frac{2}{3}$

$$
\begin{aligned}
& =\frac{5}{1} \times \frac{2}{3} \\
& =\frac{10}{3}=3 \frac{1}{3}
\end{aligned}
$$

$$
=\frac{8}{15}
$$

- Divide fractions
~Write 7 as $\frac{7}{1}$
~Flip numerator \& denominator after \div ~Multiply numerators \& denominators

e.g. $5 \div \frac{2}{3}$	$\frac{4}{5} \div \frac{2}{3}$

$$
\begin{aligned}
& =\frac{5}{1} \times \frac{3}{2} \\
& =\frac{15}{2}=7 \frac{1}{2}
\end{aligned}
$$

$$
=\frac{4}{5} \times \frac{3}{2}
$$

$$
=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}
$$

- Calculate fraction of quantity To find $\frac{4}{5}$ of a quantity $\div 5 \times 4$
e.g. $\frac{4}{5}$ of $£ 20=20 \div 5 \times 4=£ 16$

D/6 Solve an equation by trial \& improvement method

~ Find 2 consecutive numbers that the solution lies between
~ Then choose the half way number
~ Keep making improvements until the required accuracy achieved
e.g. To solve $x^{3}-3 x=6$ (correct to 1 dp)

Try $x=$	$x^{3}-3 x$	Comment
2	$2^{3}-2 \times 2=4$	Too small
3	$3^{3}-3 \times 3=28$	Too big
2.5	$2.5^{3}-3 \times 2.5=8.125$	Too big
2.3	$2.3^{3}-3 \times 2.3=5.267$	Too small
2.4	$2.4^{3}-3 \times 2.4=6.624$	Too big
2.35	$2.35^{3}-3 \times 2.35=5.928$	Too small

Solution is nearer 2.4 than 2.3
So $x=2.4$ (correct to 1dp)

D/7 Solve linear equations

~Multiply out brackets first
\sim If there are letters on both sides get rid of the smaller first
~Do the same to both sides
e.g.

To solve $5(x-3)=3 x+7$ (expand bracket)
$5 x-15=3 x+7(-3 x$ from both sides)
$2 x-15=\quad+7$ (+15 to each side)
$\begin{aligned} \frac{2 x}{2} & =\frac{22}{2}(\div 2 \text { both sides }) \\ x & =11\end{aligned}$

D/8 Sequences

- Understand position and term

Position	1	2	3	4
Term	3	7	11	15

$$
\sqrt{+4}
$$

Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position $1 \times 4-1=3$)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }}$ term ($n=1$) $=5 \times 1+1=6$
$2^{\text {nd }}$ term ($n=2$) $=5 \times 2+1=11$
$3^{\text {rd }}$ term $(n=3)=5 \times 3+1=16$

D/9 Plot graphs of linear equations

~Substitute values of x into the equation \sim Plot the points in pencil
\sim Join the points with a ruler and pencil
\sim They should be in a straight line
e.g. $y=3 x-1$

x	-2	-1	0	1	2
y	-7	-4	-1	2	5

D/10\&11 Real life graphs

 Some examples

- $A B$ shows the journey away
- $B C$ shows no movement
- CD shows journey back
- The steeper the line the higher the speed

Matching graphs to statements

D/12 Quadrilaterals \& their properties

- Know the name of each quadrilateral
- Does it have line and/or rotational symmetry?
- Are the diagonals equal or bisect each other?
- Does it have parallel sides?
- Are angles equal or opposites equal?

D/13\&14\&15 Angles

- Angles \& parallel lines

- Angles and straight lines

Straight line $=180^{\circ}$
Opposite angles are equal

- Angles of polygons
~Polygons have straight sides
~Polygons are named by the number sides
3 sides - triangle
4 sides - quadrilateral
5 sides - pentagon
6 sides - hexagon
7 sides - heptagon
8 sides - octagon
9 sides - nonagon
10 sides - decagon
~With ALL sides equal they are called REGULAR
\sim Sum of exterior angles is always 360°

~ the interior \& exterior angle add up to 180°
~ the interior angles add up to:
Triangle $=1 \times 180^{\circ}=180^{\circ}$
Quadrialteral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon $=4 \times 180^{\circ}=720^{\circ}$ etc

D/16 2D representations of 3D shapes

- 3D drawing on isometric paper (notice NO horizontal lines)

- 3 views of a 3D shape

Plan view \downarrow

- Nets

Cube

Cuboid

D/17 Enlarge a shape

You need to know:

- Centre
e.g. $(5,4)$
- Scale factor e.g. 2

D/18 Translate \& Reflect a shape

- Translate a shape

You need to know:

- Vector from A to B e.g. $\binom{3}{-4} \begin{aligned} & \text { Right } \\ & \text { Down }\end{aligned}$

Notice:

- The new shape stays the same way up
- The new shape is the same size

USE TRACING PAPER TO HELP

USE TRACING PAPER TO HELP

D/19 Constructions

- Perpendicular bisector of a line

Draw a straight line through where the arcs cross above and below.

- Bisector of a line

Draw a line from where the arcs cross to the vertex of the angle

- Construct triangle given 3 sides (Use a pair of compasses Leave the arcs on)

- Construct triangle given angles (Use a protractor)

D/20 Use formulae

- Area of circle

Area of circle $=\pi \times r^{2}$

$$
\begin{aligned}
& =\pi \times r^{2} \\
& =\pi \times 5^{2} \\
& =\underline{78.5 \mathrm{~cm}^{2}}
\end{aligned}
$$

- Circumference of circle Area of circle $=\pi \times \mathrm{d}$

$$
\begin{aligned}
& =\pi \times 8 \\
& =25.1 \mathrm{~cm}
\end{aligned}
$$

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$

- Surface area of cuboid

Front $=5 \times 3=15$
Back $=5 \times 3=15$
Top $=5 \times 2=10$
Bottom $=5 \times 2=10 \quad$ Total Surface Area $=62 \mathrm{~cm}^{2}$
Side $=3 \times 2=6$
Side $=3 \times 2=6$

D/23 Presentation of data

- Construct a pie chart

Transport	Frequency	Angle
Car	13×9	117°
Bus	4×9	36°
Walk	15×9	135
Cycle	8×9	72

Total frequency $=40$
$360^{\circ} \div 40=9^{0}$ per person

- Construct a frequency polygon (points plotted at the midpoint of the bars)

- Construct a scatter graph

D/24 Find all possible outcomes

Outcomes can be presented:

- In a list
- In a table or sample space

Example of a sample space

To show all possible outcomes from spinning a spinner and rolling a dice

		Dice					
	+	1	2	3	4	5	6
$\begin{aligned} & \text { D } \\ & \text { = } \\ & \text { in } \end{aligned}$	1	2	3	4	5	6	7
	2	3					
	3	4					
	4	5					

D/25 Sum of mutually exclusive outcomes =1

- If 2 outcomes cannot occur together, They are mutually exclusive
- If 2 outcomes A and B are mutually exclusive
$P(A)+p(B)=1$
- If 3 outcomes $A B$ and C are mutually exclusive $P(A)+p(B)+p(C)=1$
e.g. If outcomes A, B and C are mutually exclusive and
$p(A)=0.47$
$p(B)=0.31$
$\mathrm{p}(C)=1-(0.47+0.31)$
$=1-0.78$
$=0.22$

