Grade 4-5

 PROMPT sheet
C1 Understand \& use proportionality

- To increase a quantity by 5%

Multiply the quantity by $1.05(100+5=105)$

- To decrease a quantity by 5%

Multiply the quantity by $0.95(100-5)=95$

C2 Calculate using proportional change

To increase $£ 240$ by $15 \% ~(100+15=115)$
$=1.15 \times £ 240=£ 276$
To decrease $£ 240$ by $15 \%(100-15=85)$
$=0.85 \times £ 240=£ 204$

C2 Multiply \& divide numbers 0-1

- Multiply e.g. 0.2×0.4

Ignore decimal points \& multiply numbers $2 \times 4=8$
Count the number of decimal places (2)
The answer will have this many (2)
$0.2 \times 0.4=0.08$ (2 decimal places)

- Divide e.g. $8 \div 0.2$

Multiply both by 10

C2 4 rules of fractions

- Add \& subtract

Denominators must be the same

- Multiply

Multiply numerators; multiply denominators

- Divide

Invert fraction after \div
Multiply numerators; multiply denominators

C4 Round to one significant figure
These all have ONE significant figure
300
80
2
0.7
0.05
0.003
C4 Estimate answers to calculations
\quad Round each number to 1 sf first
e.9. $\frac{423 \times 28}{568}=\frac{400 \times 30}{600}=\frac{12000}{600}=20$
e.9. $\frac{3.26 \times 11.8}{0.58}=\frac{3 \times 10}{0.6}=\frac{30}{0.6}=\frac{300}{6}=50$
e.9. $\frac{8.3 \times 35.6}{0.49}=\frac{8 \times 40}{0.5}=\frac{320}{0.5}=640$
$(\div 0.5=$ doubling the number being divided $)$

C6 Expand brackets and simplify

Multiply everything inside the bracket by what is outside Then collect like terms together
3(x+2) $+2(x-5)$
$=3 x+6+2 x-10$
$=5 x-4$

Watch for the negative sign in front of the bracket It changes the sign inside the bracket
$3(x+2)-2(x-5)$
$-3 x+6-2 x+10$
$=3 x+6-2 x+10$
$=x+16$

C7 Draw a straight line graph

- To draw a graph of $x+y=7$
> Think of x and y coordinates that add to make 7
e.g. $(4,3)(3,4)(2,5)(1,6)(0,7)(-1,8) . . .$.
> These are usually put into a table:

x	-1	0	1	2	3	4
y	8	7	6	5	4	3

> Then the points are plotted and joined

- To draw a graph of $y=2 x-1$
> Some coordinates are usually given in a table
> You have to fill in the rest by following the rule of the equation ' whatever x is, multiply by 3 then -2^{\prime}

- Then the points are plotted and joined

- To find the gradient of a line
> The gradient of a line is its 'slope'
> It is measure by vertical \div horizontal

Gradient $=6 \div 4=1.5$

C9 Substitute numbers into expressions

Once numbers have replaced letters:

- Remember the order of operations BIDMAS
- Remember the rules for signs

C9 Rearrange a formula

- Use the same balancing steps as when you solve equations
e.g. Make ' t ' the new subject in:

$$
\begin{aligned}
v & =u+a t \quad \text { (-u from each side) } \\
v-u & =a t \text { (-a each side) } \\
\frac{v-u}{a} & =\frac{a t}{a} \\
t & =\frac{v-u}{a}
\end{aligned}
$$

C10 Find the nth term of a linear sequence

If the $1^{\text {st }}$ difference is constant, it is linear e.g. $\quad \begin{array}{llllll} & 7 & 11 & 15 & 19 & 23\end{array}$....

$$
+4+4 \quad+4 \quad+4 \quad+4
$$

The term to term rule is +4
nth term $=4 n-1$
The nth term can be used to find the term in any position
e.g. $10^{\text {th }}$ term means $n=10$

$$
10^{\text {th }} \text { term }=4 \times 10-1=39
$$

C11 Plot quadratic functions

(Graphs of quadratic equations have x^{2} in and look like this:

- To draw the graph of $y=x^{2}+4$
> Fill the table by following the rule
> Then join the points with a smooth curve

x	-3	-2	-1	0	1	2	3
y	13	8	5	4	5	8	13

C12 Pythagoras Theorem

For this right angled triangle:

- If finding the hypotenuse ADD the squares of the other 2 sides Then square root
- If finding a shorter side

SUBT the squares of the other 2 sides Then square root

C13 Find lengths, areas \& volumes

Formulae to learn:

Area of rectangle $=1 \times w$

Area of triangle $=\frac{b \times h}{2}$

Area of parallelogram $=b \times h$

Area of trapezium $=\frac{1}{2}(a+b) \times h$

b
Area of circle $=\pi \times r^{2}$

Circumference $=\pi \times \mathrm{d}$

Volume $=$ Area of cross-section \times length

C14 Locus of point

LOCUS is the path or region a point covers as it moves according to a rule

- Fixed distance from a point - circle

- Equal distance from two points perpendicular bisector

- Equal distance from two intersecting lines angle bisector

- Perpendicular from a point to a line

χ

C15 Bounds of measurement

- If 23 cm is rounded to nearest whole cm
- 23 is between the whole numbers 22 and 24

C16 Compound Measures

- These triangles are useful
- Cover the quantity you are trying to find
- What is uncovered is the formula to use

D~Distance
 S~Speed
 T~Time

M~Mass
D~Density
V~Volume

Examples

Speed $=\frac{\text { Distance }}{\text { Time }}$
Time $=\frac{\text { Distance }}{\text { Speed }}$

Distance $=$ Speed \times Time

C17 Plan a Statistical Enquiry

- Questions should be simple
- The answers need to be 'yes or 'no' or a 'number' or from a choice of answers
- Tick boxes are useful
- Avoid responses open to interpretation
- Avoid leading questions
- Avoid open-ended questions
- Avoid biased questions
- Ensure the sample is large enough
- Ensure the sample will give valid results

C18 Graphical representation

Scatter diagrams - used to investigate correlation

e.g. Positive Correlation

> Strong positive
> Weak positive

If it shows correlation, draw a line of best fit on it Points which do not fit the trend are called OUTLIERS and should be ignored
The line can be used to predict data

$$
\begin{aligned}
& x+x \\
& x \\
& x+x
\end{aligned}
$$

Negative

No correlation

C19 Estimate mean			
Time (t sec)	\times	f	fx
$60<t \leq 70$	65	12	780
$70<t \leq 80$	75	22	1650
$80<t \leq 90$	85	23	1955
90<tı 100	95	24	2280
$100<t \leq 110$	105	19	1995
Mean Modal (becaus frequen Media	$\frac{\Sigma f x}{\Sigma f}$ ass this c i.e. $=\frac{1}{2}$ $=80$	$\begin{aligned} & =10 \\ & \frac{60}{0}= \\ & <+t \\ & \text { inter } \\ & +1) \\ & \leq 9 \end{aligned}$	$f x=86$ sec 00 the lar $0.5^{\text {th }}$

C22 Examine results of an enquiry Justify choice of presentation

A scatter diagram would be used to find out if there is any correlation or relationship between two sets of data A frequency polygon would be used to compare two sets of data

C20 Compare distributions

- Compare an average using mean, median or mode.
- Compare spread using the range (the higher the range, the bigger the spread of data)
- Frequency polygons and stem \& leaf diagrams are often used to compare 2 distributions on the same diagram

C21 Understand relative frequency

This is the name given to an estimate of probability from an experiment or a survey

Relative probability $=$ No. times an outcome occurs
Total number of trials

