Grade 4 - 5 PROMPT sheet

C1 Understand & use proportionality

To increase a quantity by 5%

Multiply the quantity by 1.05 (100+5 = 105)

To decrease a quantity by 5%

Multiply the quantity by 0.95 (100-5) = 95

C2 Calculate using proportional change

To increase £240 by 15% (100+15 = 115)

 $= 1.15 \times £240 = £276$

To decrease £240 by 15% (100-15 = 85)

 $= 0.85 \times £240 = £204$

C2 Multiply & divide numbers 0-1

Multiply e.g. 0.2 x 0.4

Ignore decimal points & multiply numbers

$$2 \times 4 = 8$$

Count the number of decimal places (2)

The answer will have this many (2)

$$0.2 \times 0.4 = 0.08$$
 (2 decimal places)

Divide e.g. 8 ÷ 0.2

Multiply both by 10

$$80 \div 2 = 40$$
 makes whole

C2 4 rules of fractions

Add & subtract

Denominators must be the same

Multiply

Multiply numerators; multiply denominators

Divide

Invert fraction after ÷

Multiply numerators; multiply denominators

C4 Round to one significant figure

These all have ONE significant figure

- 300
- 80
- 2
- 0.7 0.05
- 0.003

C4 Estimate answers to calculations

Round each number to 1sf first

e.g.
$$\frac{423 \times 28}{568} = \frac{400 \times 30}{600} = \frac{12000}{600} = 20$$

e.g.
$$\frac{3.26 \times 11.8}{0.58} = \frac{3 \times 10}{0.6} = \frac{30}{0.6} = \frac{300}{6} = 50$$

e.g.
$$8.3 \times 35.6 = 8 \times 40 = 320 = 640$$

0.49 0.5 0.5

 $(\div 0.5 = doubling the number being divided)$

C5 Use a calculator efficiently

Know your keys

$$x^2$$
 x^3 x^{-1} $\sqrt{3}$ (-)

C6 Expand brackets and simplify

Multiply everything inside the bracket by what is outside Then collect like terms together

$$3(x+2)+2(x-5)$$

=3x + 6 + 2x - 10

$$=3x + 6 + 2x - 10$$

Watch for the negative sign in front of the bracket It changes the sign inside the bracket

$$3(x+2) - 2(x-5)$$

$$=3x + 6 - 2x + 10$$

$$=x + 16$$

C7 Draw a straight line graph

- To draw a graph of x + y = 7
- Think of x and y coordinates that add to make 7

> These are usually put into a table:

X	-1	0	1	2	3	4
У	8	7	6	5	4	3

> Then the points are plotted and joined

- To draw a graph of y = 2x 1
- Some coordinates are usually given in a table
- You have to fill in the rest by following the rule of the equation 'whatever x is, multiply by 3 then -2'

• Then the points are plotted and joined

• To find the gradient of a line

- The gradient of a line is its 'slope'
- > It is measure by vertical ÷ horizontal

C8 Solve inequalities in one variable

- a < b means a is less than b
- $a \le b$ means a is less than or equal to b
- a > b means a is greater than b
- $a \ge b$ means a is greater than or equal to b

Inequalities can be treated like equations

The solution can be shown on a number line

e.g. 2
$$2x - 7 \le 5x + 2$$
 (-2x each side)
 $-7 \le 3x + 2$ (-2 each side)
 $-9 \le 3x$ (÷3 each side)
 $-3 \le x$ (swap around)
 $x \ge -3$ (swap inequality symbol)

e.g. 3
$$-7 \le 2x - 1 < 3$$
 (+1 to each part)
 $-6 \le 2x < 4$ (÷2 each side)
 $-3 \le x < 2$

C9 Substitute numbers into expressions

Once numbers have replaced letters:

- Remember the order of operations BIDMAS
- Remember the rules for signs

C9 Rearrange a formula

- Use the same balancing steps as when you solve equations
- e.g. Make 't' the new subject in:

$$v = u + at$$
 (-u from each side)
- $u = at$ (÷a each side)

$$\underline{v} = \underline{u} - \underline{v}$$

C10 Find the nth term of a linear sequence

If the $\mathbf{1}^{\text{st}}$ difference is constant, it is linear

The term to term rule is +4

nth term = 4n - 1

The nth term can be used to find the term in any position

e.g.
$$10^{th}$$
 term means n=10

$$10^{th}$$
 term = $4 \times 10 - 1 = 39$

C11 Plot quadratic functions

 \triangleright Graphs of quadratic equations have x^2 in and look like this:

- To draw the graph of $y = x^2 + 4$
- > Fill the table by following the rule
- > Then join the points with a smooth curve

×	-3	-2	-1	0	1	2	3
У	13	8	5	4	5	80	13
				2 ² + 4			
$(-2)^2 + 4$							

C12 Pythagoras Theorem

For this right angled triangle:

- If finding the hypotenuse ADD the squares of the other 2 sides Then square root
- If finding a shorter side SUBT the squares of the other 2 sides Then square root

C13 Find lengths, areas & volumes

Formulae to learn:

Area of rectangle = $1 \times w$

Area of triangle = $\frac{b \times h}{2}$

Area of parallelogram = $b \times h$

Area of trapezium = $\frac{1}{2}(a + b)xh$

Area of circle = $\pi \times r^2$

Circumference = $\pi \times d$

Volume = Area of cross-section x length

C14 Locus of point

LOCUS is the path or region a point covers as it moves according to a rule

• Fixed distance from a point - circle

• Equal distance from two points perpendicular bisector

 Equal distance from two intersecting lines angle bisector

· Perpendicular from a point to a line

C15 Bounds of measurement

- If 23cm is rounded to nearest whole cm
- 23 is between the whole numbers 22 and 24

C16 Compound Measures

- These triangles are useful
- · Cover the quantity you are trying to find
- What is uncovered is the formula to use

D~Distance S~Speed T~Time

M~Mass D~Density V~Volume

Examples

Speed = <u>Distance</u> Time Time = <u>Distance</u> Speed

Distance = Speed x Time

C17 Plan a Statistical Enquiry

- · Questions should be simple
- The answers need to be 'yes or 'no' or a 'number' or from a choice of answers
- · Tick boxes are useful
- Avoid responses open to interpretation
- Avoid leading questions
- Avoid open-ended questions
- Avoid biased questions
- Ensure the sample is large enough
- Ensure the sample will give valid results

C18 Graphical representation

Scatter diagrams - used to investigate correlation

e.g. Positive Correlation

Strong positive

Weak positive

If it shows correlation , draw a <u>line of best fit</u> on it Points which do not fit the trend are called OUTLIERS and should be ignored <u>The line</u> can be used to predict data

C19 Estimate mean

Time († sec)	×	f	f×	
60 < <i>t</i> ≤ 70	65	12	780	
70 < t ≤ 80	75	22	1650	
80 < <i>t</i> ≤ 90	85	23	1955	
90 < † ≤ 100	95	24	2280	
100 < † ≤ 110	105	19	1995	

$$\Sigma f = 100 \quad \Sigma f x = 8660$$

Mean =
$$\sum fx = 8660 = 86.6sec$$

 $\sum f = 100$

Modal class = <u>90 < *t* ≤ 100</u>

(because this class interval has the largest frequency i.e. 24)

Median =
$$\frac{1}{2}$$
 (100 + 1) th = 50.5th = 80 < $t \le 90$

C20 Compare distributions

- Compare an average using mean, median or mode.
- Compare spread using the range (the higher the range, the bigger the spread of data)
- Frequency polygons and stem & leaf diagrams are often used to compare
 2 distributions on the same diagram

C21 Understand relative frequency

This is the name given to an estimate of probability from an experiment or a survey

Relative probability = <u>No. times an outcome occurs</u>

Total number of trials

C22 Examine results of an enquiry Justify choice of presentation

<u>A scatter diagram</u> would be used to find out if there is any correlation or relationship between two sets of data <u>A frequency polygon</u> would be used to compare two sets of data